Herhaalde metingen: Difference between revisions

From Wikistatistiek
Jump to navigation Jump to search
No edit summary
Line 23: Line 23:


*'''Simpele methodes''': Soms kunnen herhaalde metingen samengevat worden in een enkele relevante maat. Je kunt bijvoorbeeld de meting van slechts een tijdpunt gebruiken, de verandering tussen twee meetpunten gebruiken, een samenvattende maat zoals het gemiddelde of de [[herhaalde metingen#area under the curve| area under the curve]] uitrekenen, of de tijd tot het bereiken van een bepaald level analyseren in een [[survival analyse]].
*'''Simpele methodes''': Soms kunnen herhaalde metingen samengevat worden in een enkele relevante maat. Je kunt bijvoorbeeld de meting van slechts een tijdpunt gebruiken, de verandering tussen twee meetpunten gebruiken, een samenvattende maat zoals het gemiddelde of de [[herhaalde metingen#area under the curve| area under the curve]] uitrekenen, of de tijd tot het bereiken van een bepaald level analyseren in een [[survival analyse]].
*'''Geavanceerde methodes''': Methodes die wel herhaalde metingen aankunnen zijn o.a. [[mixed effects modellen]], [[herhaalde metingen#repeated measurements ANOVA|repeated measurements ANOVA]] en Generalized Estimation Equations (GEE).  
*'''Geavanceerde methodes''': Methodes die wel herhaalde metingen aankunnen zijn o.a. [[mixed effects modellen]], [[repeated measures ANOVA]] en Generalized Estimation Equations (GEE).  


De simpele methodes gebruiken maar een deel van de verzamelde informatie en dat levert vaak minder onderscheidingsvermogen (power) op.
De simpele methodes gebruiken maar een deel van de verzamelde informatie en dat levert vaak minder onderscheidingsvermogen (power) op.
Line 41: Line 41:




=repeated measurements ANOVA=
Repeated measurements ANOVA is een wat oudere term voor speciale vormen van mixed-models voor het analyseren van herhaalde metingen van een kwantitatieve afhankelijke variabele die normaal verdeeld is. Binnen het SPSS pakket wordt deze techniek aangeduid als GLM - repeated. Zoals eerder opgemerkt is deze procedure specifieke variant van mixed-models, maar is alleen beschikbaar voor continue normaal verdeelde afhankelijke variabelen, die op vaste en dezelfde tijdstippen zijn gemeten in alle patiënten.


Repeated measures ANOVA zoals in SPSS geimplementeerd, geeft twee soorten analyses, namelijk onder de aanname dat de correlaties tussen de herhaalde metingen allemaal dezelfde waarde hebben (compound symmetry) of zonder aannames over de correlaties (unstructured). In de SPSS output worden de compound-symmetry resultaten onder het kopje Tests of Within-Subjects Effects gerapporteerd en de unstructured resultaten onder het kopje Multivariate Tests. Wel handig is dat Mauchly's Test of Sphericity wordt gegeven; dat is een statistische toets van de nulhypothese dat de compound symmetry aanname klopt (kleine p-waardes van deze test zijn een indicatie dat compound symmetry niet goed past bij de data). Als sphericity (i.e. compound symmetry) wordt verworpen, dan kunnen ofwel de multivariate toets resultaten gebruikt worden, ofwel een Greenhouse-Geisser of een Huynh-Feldt correctie worden toegepast op de Tests of Within-Subjects Effects.
==Wanneer kan ik een repeated measurements ANOVA gebruiken?==
Je kunt een repeated measurements ANOVA gebruiken als:
* de afhankelijke variabele continue is en (per level van de onafhankelijke voorspeller) normaal verdeeld is,
* de herhaalde metingen op vaste tijdstippen in alle patienten zijn gedaan,
* er geen missende waardes zijn.
==Hoe kan ik post hoc testen doen bij een two-way repeated measures anova?==
''Ik heb twee onafhankelijke groepen (patient/controle is between subject factor) waarbij  bij beide op 5 tijdsmomenten data is verzameld (5 timepoints als within subject factor). Nu run ik een two-way repeated measures anova om het interactie effect tussen groep en tijd te bekijken. Indien dit significant is wil ik graag weten op welke tijdsmomenten de controle groep verschilde van de patient groep. Er is geen optie in SPSS om een Tukey post hoc test te doen. Mag je in deze situatie een independent t-test gebruiken op ieder tijdstip om te bepalen op welke verschillende tijdsmomenten de twee groepen met elkaar verschilden?
''Zo niet, dan wil ik graag een Tukey met de hand uitrekenen, dit heb ik al wel gedaan voor de one-way repeated measures anova waarin ik bij de patient groep heb gekeken op welke tijdsmomenten de data verschilde met de data van de baseline meting. Maar kan je dit ook doen bij een two way anova met 2 onafhankelijke groepen?
Je kunt de losse (t-)testen doen (t0 patient minus t0 controle, t1 patient minus t1 controle etc.). En vervolgens moet je de uitkomsten van die testen corrigeren voor het feit dat je [[multiple testing|multiple comparisons]] doet. Ik zou daar zelf niet direct zien hoe Tukey toe te passen, omdat je daarbij uitgaat van een aantal means met hypothese dat ze allemaal (aan elkaar) gelijk zijn. Nu is het een ander geval, namelijk je wilt kijken of de means telkens 2 aan 2 gelijk aan elkaar zijn. Ik zou daarom een andere correctiemethode gebruiken (zoals [[Multiple_testing#Hoe_kan_ik_corrigeren_met_de_Bonferroni_methode|Bonferroni]] of [[Multiple_testing#Hoe_kan_ik_corrigeren_met_de_Bonferroni_methode|Bonferroni-Holms]]).
Let bij je eerdere analyse (post hoc op de within factor) ook goed op dat je de vergelijkingen wel gepaard uitvoert. Overigens kun je deze (within) vergelijking wel door spss laten doen. Namelijk door onder 'Options' de factor 'tijd' naar 'Display means for' te brengen en dan 'compare main effects' aan te klikken, met gewenste correctiemethode.
Op deze [http://www.uvm.edu/~dhowell/StatPages/More_Stuff/RepMeasMultComp/RepMeasMultComp.html site van David Howell] staan zeer veel adviezen over de zin en onzin van post hoc tests bij repeated measurements ANOVA's.
== Waar vind ik de repeated measurements ANOVA in SPSS?==
Je vindt de repeated measurements ANOVA in SPSS 16 onder Analyze->General Linear Model->Repeated measures.
Er geldt voor de repeated measurements ANOVA dat de herhaalde metingen van de patienten in aparte kolommen naast elkaar in de SPSS file moeten staan. Stel dat er drie herhaalde metingen van drie patienten zijn, dan ziet de data file er als volgt uit met vier kolommen:
{| border ="1" style="width:450px" align="center" cellpadding="3"
! patientnummer!! meting1 !! meting2 !! meting3
|-
|align="center"| 1
|align="center"| 10
|align="center"| 9
|align="center"| 11
|-
|align="center"| 2
|align="center"| 8
|align="center"| 11
|align="center"| 12
|-
|align="center"| 3
|align="center"| 5
|align="center"| 8
|align="center"| 9
|-
|}





Revision as of 14:14, 6 March 2019

Auteur dr. ir. N van Geloven
Co-Auteur prof. dr. A.H. Zwinderman
auteurschap op deze site

Wat zijn herhaalde metingen?

Herhaalde metingen zijn meerdere metingen van dezelfde variabele bij dezelfde persoon, patient, proefdier, of algemeen geformuleerd, dezelfde observationele eenheid. Voorbeelden:

  • herhaling in de tijd: als patienten herhaaldelijk in een follow-up periode worden gemeten (of: voor en na een behandeling);
  • meerdere locaties: metingen op meerdere locaties in het lichaam van dezelfde persoon (linker en rechter oog, meerdere coupes in een biopt, meerdere slices in een MRI beeld);
  • meerdere condities: als dezelfde patient onder twee of meer verschillende condities (bijv. behandelingen) wordt gemeten, bijvoorbeeld bij een cross-over studie;
  • herhalingen tbv nauwkeurigheid: als een meting een grote variatie binnen een persoon heeft (of een grote meetfout) dan kan het zinvol zijn om een aantal aparte metingen te doen;
  • multilevel structuren: als metingen bij meerdere personen gedaan zijn die onderdeel uitmaken van dezelfde groep. Bijvoorbeeld patienten die dezelfde huisarts hebben, waarbij de interventie per huisartspraktijk is uitgevoerd. Het klassieke voorbeeld hier zijn leerlingen die dezelfde docent hebben en docenten die weer bij eenzelfde school horen.

Waarom kun je bij herhaalde metingen geen standaard regressie model gebruiken?

Bij een standaard regressie model wordt aangenomen dat alle metingen onafhankelijk van elkaar zijn. Bij herhaalde metingen is het waarschijnlijk dat twee metingen van dezelfde persoon meer op elkaar lijken dan twee metingen van verschillende personen. Als dat zo is, dan zijn de metingen binnen dezelfde persoon niet onafhankelijk. Als bij herhaalde metingen geen rekening wordt gehouden met deze afhankelijkheid, dan zijn i.h.a. de standaard fouten en de p-waardes (onterecht!) te klein. Bovendien kan de uitkomst van de regressie analyse volkomen fout zijn, zoals geïllustreerd in het plaatje dat hieronder staat. In deze figuur worden de observaties van 12 personen getoond en elke persoon laat een duidelijk stijgende trend zien. Als de afhankelijkheid van de waarnemingen genegeerd wordt, dan is de best passende regressie lijn door de totale punten-wolk de oranje dalende lijn en deze geeft geen correcte weergave van de trend per patiënt.

14189829-0.jpg

Welke analyses zijn er mogelijk voor herhaalde metingen?

  • Simpele methodes: Soms kunnen herhaalde metingen samengevat worden in een enkele relevante maat. Je kunt bijvoorbeeld de meting van slechts een tijdpunt gebruiken, de verandering tussen twee meetpunten gebruiken, een samenvattende maat zoals het gemiddelde of de area under the curve uitrekenen, of de tijd tot het bereiken van een bepaald level analyseren in een survival analyse.
  • Geavanceerde methodes: Methodes die wel herhaalde metingen aankunnen zijn o.a. mixed effects modellen, repeated measures ANOVA en Generalized Estimation Equations (GEE).

De simpele methodes gebruiken maar een deel van de verzamelde informatie en dat levert vaak minder onderscheidingsvermogen (power) op. Repeated measurements ANOVA is een specifieke variant van mixed-models, maar is alleen beschikbaar voor continue normaal verdeelde afhankelijke variabelen, die op vaste en dezelfde tijdstippen zijn gemeten in alle patienten. Mixed-models en GEE-modellen zijn wat lastiger te specificeren, maar zijn flexibeler en zijn beschikbaar voor zowel continue normaal verdeelde afhankelijke variabelen, als voor bijv dichotome afhankelijke variabelen. Bovendien kunnen de mixed modellen ook omgaan met een zekere mate van missing values, namelijk wanneer de data missing at random zijn.

area under the curve

Wat is een area under the curve en wanneer kun je die gebruiken?

Wanneer er op meerdere tijdstippen metingen zijn van een patient, kun je die samenvatten in een "area under the curve". Hierbij bereken je per patient de oppervlakte onder de gemeten punten in de tijd. Deze samenvattende maat gebruik je vervolgens voor de analyse.

Hoe bereken ik met SPSS een area under the curve bij herhaalde metingen?

Ik wil graag van een bepaalde meting in de tijd, op verschillende tijdstippen gemeten, de 'area under the curve' bepalen. Ik kom er met SPSS niet uit. Ik moet er nl een stuk of 300 bepalen... heeft u nog een advies?

Je kunt de volgende syntax gebruiken, deze rekent per patient een area under the curve uit. Bovenaan het document staat beschreven hoe je de variabelen in SPSS moet hebben staan.




Hoe kan ik data van 4 experimenten combineren?

De experimenten die ik verricht, heb ik in 4 sessies opgesplitst, aangezien het niet behapbaar was alle samples in een keer te verwerken. Nu blijkt dat de vergelijkingsgroepen (verschillende diagnoses) binnen elke serie toch wel erg klein zijn en vraag ik me af of en hoe ik de data van de 4 series zou kunnen combineren.

Wat wel gebruikt wordt bij zulk soort settings is het toepassen van een factor correctie. Zie ook de referentie naar de paper van Ruijter [1] onderaan op deze pagina. Je kunt ook binnen een statistisch model een correctie voor de 'clustering' binnen sessies meenemen, bijvoorbeeld door een mixed of glm-repeated analyse te doen. Je beschouwt de experimenten dan als 'herhaalde metingen' binnen een sessie.

Wat is het minimaal aantal observaties bij het gebruik van een mixed-effects model?

'Hoeveel datapunten (clusters en/of patiënten) heb ik nodig als ik een mixed-effects model wil gebruiken?'

Deze paper geeft wat houvast bij binaire uitkomsten. En Deze paper bij continue uitkomsten.


Referenties

  1. Ruijter JM, Thygesen HH, Schoneveld OJ, Das AT, Berkhout B, Lamers WH, Factor correction as a tool to eliminate between-session variation in replicate experiments: application to molecular biology and retrovirology, Retrovirology. 2006 Jan 6;3:2. [1]

    [Ruijter2006]
  2. Gueorguieva R, Krystal JH. Move Over ANOVA: Progress in Analyzing Repeated-Measures Data and Its Reflection in Papers Published in the Archives of General Psychiatry. Arch Gen Psychiatry. 2004 Mar;61(3):310-7. [1]

    [Gueorguieva2004]
  3. BT, Analyzing Longitudinal Data With the Linear Mixed Models Procedure in SPSS. Eval Health Prof 2009 32: 207-228. [1]

    [West]

Informatie op andere websites

Sofwaretips

  • GLLAMM Een familie functies (vrij te downloaden/attachen) in Stata, waarbij er opties zijn voor het modelleren van herhaaldelijk gemeten niet continue uitkomstmaten (dichotome, ordinale etc).
  • SuperMix Een standalone programma geschikt voor het modelleren van herhaaldelijk gemeten niet continue uitkomstmaten (dichotome, ordinale etc).

Klaar met lezen? Je kunt naar het OVERZICHT van alle statistische onderwerpen op deze wiki gaan of naar de pagina KEUZE TOETS voor hulp bij het uitzoeken van een geschikte toets of analyse. Wil je meer leren over biostatistiek? Volg dan de AMC e-learning Practical Biostatistics. Vind je op deze pagina's iets dat niet klopt? Werkt een link niet? Of wil je bijdragen aan de wiki? Neem dan contact met ons op.

De wiki biostatistiek is een initiatief van de voormalige helpdesk statistiek van Amsterdam UMC, locatie AMC. Medewerkers van Amsterdam UMC kunnen via intranet ondersteuning aanvragen.