Herhaalde metingen: Difference between revisions
m (broken link verwijderd) |
|||
(43 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{auteurs| | {{auteurs| | ||
|mainauthor= [[user:Nan van Geloven|ir. N van Geloven]] | |mainauthor= [[user:Nan van Geloven|dr. ir. N van Geloven]] | ||
|coauthor= prof. dr. A.H. Zwinderman | |coauthor= prof. dr. A.H. Zwinderman | ||
}} | }} | ||
==Wat | ==Wat wordt bedoeld met herhaalde metingen?== | ||
Herhaalde metingen zijn meerdere metingen van dezelfde variabele bij dezelfde persoon | Herhaalde metingen zijn meerdere metingen van dezelfde variabele bij dezelfde persoon, patiënt, proefdier, of algemeen geformuleerd, dezelfde observationele eenheid. Voorbeelden: | ||
*'''herhaling in de tijd''': als | *'''herhaling in de tijd''': als dezelfde meting herhaaldelijk bij een patiënt wordt uitgevoerd, bijvoorbeeld voor en na een behandeling, of gedurende een follow-up-periode; | ||
*'''meerdere locaties''': metingen op meerdere locaties in het lichaam van dezelfde persoon (linker en | *'''meerdere locaties''': als metingen worden verricht op meerdere locaties in het lichaam van dezelfde persoon (linker- en rechteroog, meerdere coupes in een biopt, meerdere slices in een MRI beeld); | ||
*'''meerdere condities''': als dezelfde | *'''meerdere condities''': als dezelfde patiënt onder verschillende condities (bijv. twee behandelingen of testcondities) wordt gemeten, bijvoorbeeld bij een cross-over-studie of bij het vergelijken van beoordelaars; | ||
*'''herhalingen | *'''herhalingen ten bate van nauwkeurigheid''': als een meting een grote variatie binnen een persoon heeft (of een grote meetfout), of wanneer bijvoorbeeld de beperkte steekproefgrootte om een grotere nauwkeurigheid vraagt i.v.m. power, dan kan het zinvol zijn om een aantal aparte metingen te doen; | ||
*'''multilevel structuren''': als metingen bij meerdere personen gedaan zijn die onderdeel uitmaken van dezelfde groep. Bijvoorbeeld | *'''(andere) multilevel structuren''': als metingen bij meerdere personen gedaan zijn die onderdeel uitmaken van dezelfde groep, of waarvan anderszins kan worden verondersteld dat metingen van personen binnen hetzelfde cluster meer op elkaar lijken dan twee metingen van personen uit een ander cluster. Bijvoorbeeld: Patiënten die dezelfde huisarts hebben (zeker indien de interventie per huisartspraktijk is uitgevoerd) of in hetzelfde ziekenhuis behandeld worden kunnen vaak niet als onafhankelijke observaties worden beschouwd. Het klassieke voorbeeld hier zijn leerlingen die dezelfde docent hebben en docenten die weer bij eenzelfde school horen. | ||
==Waarom kun je bij herhaalde metingen geen standaard | ==Waarom kun je bij herhaalde metingen geen standaard regressiemodel gebruiken?== | ||
Bij een standaard | Bij een standaard regressiemodel wordt aangenomen dat alle metingen onafhankelijk van elkaar zijn. Bij herhaalde metingen is het waarschijnlijk dat twee metingen van dezelfde persoon meer op elkaar lijken dan twee metingen van verschillende personen. Als dat zo is, dan zijn de metingen binnen dezelfde persoon niet onafhankelijk. Als bij herhaalde metingen geen rekening wordt gehouden met deze afhankelijkheid, dan zijn i.h.a. de standaardfouten en de p-waardes (onterecht!) te klein. | ||
Bovendien kan de uitkomst van de regressie analyse volkomen fout zijn, zoals | Bovendien kan de uitkomst van de regressie-analyse zelfs volkomen fout zijn, zoals geïllustreerd in het plaatje dat hieronder staat. In deze figuur worden de observaties van 12 personen getoond en elke persoon laat een duidelijk stijgende trend zien. Als de afhankelijkheid van de waarnemingen genegeerd wordt, dan is de best passende regressielijn door de totale puntenwolk de oranje dalende lijn en deze geeft geen correcte weergave van de trend per patiënt. | ||
[[Image: | [[Image:14189829-0.jpg|500px]] | ||
==Welke analyses zijn er mogelijk voor herhaalde metingen?== | ==Welke analyses zijn er mogelijk voor herhaalde metingen?== | ||
*'''Simpele methodes''': Soms kunnen herhaalde metingen samengevat worden in een enkele relevante maat. Je kunt bijvoorbeeld de meting van slechts een tijdpunt | *'''Simpele methodes''': Soms kunnen herhaalde metingen samengevat worden in een enkele relevante maat. Je kunt bijvoorbeeld de meting van slechts een tijdpunt of de verandering tussen twee meetpunten gebruiken, een samenvattende maat zoals het gemiddelde of de [[herhaalde metingen#area under the curve| area under the curve]] uitrekenen, of de tijd tot het bereiken van een bepaalde grenswaarde van de uitkomstmaat te analyseren ([[survival analyse]]). | ||
De simpele methodes gebruiken maar een deel van de verzamelde informatie en dat levert vaak minder onderscheidingsvermogen (power) op. | De simpele methodes gebruiken maar een deel van de verzamelde informatie en dat levert vaak minder onderscheidingsvermogen (power) op. Daarentegen is de interpretatie ervan mogelijk veel intuïtiever dan bij het gebruiken van geavanceerdere methodes. | ||
*'''Geavanceerde methodes''': Er bestaan ook methodes die wel alle herhaalde metingen gebruiken en corrigeren voor de afhankelijkheid van de metingen. Voorbeelden van analyses die geschikt zijn voor herhaalde metingen zijn o.a. [[mixed effects modellen]] (waaronder de [[repeated measures ANOVA]]) en [[Mixed effects modellen#Wat zijn GEE-modellen?| generalized estimating equations]] (GEE). | |||
Repeated measurements ANOVA is een specifieke variant van mixed effects-modellen, specifiek voor [[KEUZE TOETS#Van welk type is mijn data?|continue normaal verdeelde]] afhankelijke variabelen die op vaste en dezelfde tijdstippen zijn gemeten in alle patiënten. | |||
Mixed effects-modellen en GEE-modellen zijn flexibeler dan de [[repeated measures ANOVA]] en zijn beschikbaar voor zowel continue normaal verdeelde afhankelijke variabelen, als voor bijvoorbeeld [[KEUZE TOETS#Van welk type is mijn data?|dichotome]] afhankelijke variabelen. Bovendien kunnen de mixed effects modellen, in tegenstelling tot de [[repeated measures ANOVA]] ook omgaan met een zekere mate van [[missing values]], namelijk wanneer de data [[missing values#Welke soorten missing values zijn er?|missing at random]] zijn. | |||
==Hoe bereken ik met SPSS een area under the curve bij herhaalde metingen?== | ==Hoe bereken ik met SPSS handig een area under the curve bij veel herhaalde metingen?== | ||
''Ik wil graag van een bepaalde meting in de tijd, op verschillende tijdstippen gemeten, de 'area under the curve' bepalen. Ik kom er met SPSS niet uit. Ik moet er | ''Ik wil graag van een bepaalde meting in de tijd, op verschillende tijdstippen gemeten, de 'area under the curve' bepalen. Ik kom er met SPSS niet uit. Ik moet er namelijk een stuk of 300 bepalen... heeft u nog een advies? | ||
Je kunt de volgende [[Media: Syntax_for_calculating_AUC.doc | syntax ]] gebruiken, deze rekent per | Binnen SPSS kun je 'loops' gebruiken om bewerkingen of hercoderingen efficiënt uit te voeren. Je kunt de volgende [[Media: Syntax_for_calculating_AUC.doc | syntax ]] gebruiken, deze rekent per patiënt een area under the curve uit. Bovenaan het document staat beschreven hoe je de variabelen in SPSS moet hebben staan. | ||
= | == Hoe kan ik data van 4 experimenten combineren? == | ||
''De experimenten die ik verricht, heb ik in 4 sessies opgesplitst, aangezien het niet behapbaar was alle samples in een keer te verwerken. Nu blijkt dat de vergelijkingsgroepen (verschillende diagnoses) binnen elke serie toch wel erg klein zijn en vraag ik me af of en hoe ik de data van de 4 series zou kunnen combineren. | |||
Wat wel gebruikt wordt bij zulk soort settings is het toepassen van een factor-correctie. Zie ook de referentie naar de paper van Ruijter <cite>[Ruijter2006]</cite> onderaan op deze pagina. Je kunt ook binnen een statistisch model een correctie voor de 'clustering' binnen sessies meenemen, bijvoorbeeld door een [[herhaalde metingen#mixed models|mixed]] model of [[repeated measures ANOVA]] te gebruiken. Je beschouwt de experimenten dan als 'herhaalde metingen' binnen een sessie. | |||
= Referenties = | = Referenties = | ||
<biblio> | |||
#Gueorguieva2004 pmid=14993119 | |||
#West2009 pmid=19679634 | |||
#Ruijter2006 pmid=16398936 | |||
</biblio> | |||
*[http:// | =Aanvullende bronnen= | ||
*[http:// | *Deze post van Jonathan Bartlett over [http://thestatsgeek.com/2017/05/11/odds-ratios-collapsibility-marginal-vs-conditional-gee-vs-glmms/ Odds ratios, collapsibility, marginal vs. conditional, GEE vs GLMMs ] geeft aan wat het verschil is tussen GEE en GLMM (mixed model) aanpak bij binaire uitkomsten. | ||
*[http:// | * [http://www.theanalysisfactor.com/repeated-and-random-2/ The analysis factor - The Repeated and Random Statements in Mixed Models for Repeated Measures] info over het onderscheid tussen de repeated en de random statement in SPSS mixed. | ||
*[http://www. | * [http://www.theanalysisfactor.com/repeated-measures-approaches/ The analysis factor] info over de verschillende aanpakken voor herhaalde metingen: repeated measurements anova, marginal model, mixed model. | ||
* [http://www.floppybunny.org/robin/web/virtualclassroom/stats/course2.html Robin Beaumont Heath Informatics course material] Vrij te gebruiken cursusmateriaal over linear mixed models met uileg van specificatie in zowel SPSS als R, zie week 6 7 en 8. Inclusief bijbehorende Youtube instructiefilmpjes. | |||
=Sofwaretips= | |||
*[http://www.gllamm.org/ GLLAMM] Een familie functies (vrij te downloaden/attachen) in [[Statistische software#Stata|Stata]], waarbij er opties zijn voor het modelleren van herhaaldelijk gemeten niet continue uitkomstmaten (dichotome, ordinale etc). | |||
*[http://tigger.uic.edu/~hedeker/mix.html SuperMix] Een standalone programma geschikt voor het modelleren van herhaaldelijk gemeten niet continue uitkomstmaten (dichotome, ordinale etc). | |||
{{onderschrift}} | |||
Latest revision as of 16:11, 20 November 2024
Auteur | dr. ir. N van Geloven | |
Co-Auteur | prof. dr. A.H. Zwinderman | |
auteurschap op deze site |
Wat wordt bedoeld met herhaalde metingen?
Herhaalde metingen zijn meerdere metingen van dezelfde variabele bij dezelfde persoon, patiënt, proefdier, of algemeen geformuleerd, dezelfde observationele eenheid. Voorbeelden:
- herhaling in de tijd: als dezelfde meting herhaaldelijk bij een patiënt wordt uitgevoerd, bijvoorbeeld voor en na een behandeling, of gedurende een follow-up-periode;
- meerdere locaties: als metingen worden verricht op meerdere locaties in het lichaam van dezelfde persoon (linker- en rechteroog, meerdere coupes in een biopt, meerdere slices in een MRI beeld);
- meerdere condities: als dezelfde patiënt onder verschillende condities (bijv. twee behandelingen of testcondities) wordt gemeten, bijvoorbeeld bij een cross-over-studie of bij het vergelijken van beoordelaars;
- herhalingen ten bate van nauwkeurigheid: als een meting een grote variatie binnen een persoon heeft (of een grote meetfout), of wanneer bijvoorbeeld de beperkte steekproefgrootte om een grotere nauwkeurigheid vraagt i.v.m. power, dan kan het zinvol zijn om een aantal aparte metingen te doen;
- (andere) multilevel structuren: als metingen bij meerdere personen gedaan zijn die onderdeel uitmaken van dezelfde groep, of waarvan anderszins kan worden verondersteld dat metingen van personen binnen hetzelfde cluster meer op elkaar lijken dan twee metingen van personen uit een ander cluster. Bijvoorbeeld: Patiënten die dezelfde huisarts hebben (zeker indien de interventie per huisartspraktijk is uitgevoerd) of in hetzelfde ziekenhuis behandeld worden kunnen vaak niet als onafhankelijke observaties worden beschouwd. Het klassieke voorbeeld hier zijn leerlingen die dezelfde docent hebben en docenten die weer bij eenzelfde school horen.
Waarom kun je bij herhaalde metingen geen standaard regressiemodel gebruiken?
Bij een standaard regressiemodel wordt aangenomen dat alle metingen onafhankelijk van elkaar zijn. Bij herhaalde metingen is het waarschijnlijk dat twee metingen van dezelfde persoon meer op elkaar lijken dan twee metingen van verschillende personen. Als dat zo is, dan zijn de metingen binnen dezelfde persoon niet onafhankelijk. Als bij herhaalde metingen geen rekening wordt gehouden met deze afhankelijkheid, dan zijn i.h.a. de standaardfouten en de p-waardes (onterecht!) te klein. Bovendien kan de uitkomst van de regressie-analyse zelfs volkomen fout zijn, zoals geïllustreerd in het plaatje dat hieronder staat. In deze figuur worden de observaties van 12 personen getoond en elke persoon laat een duidelijk stijgende trend zien. Als de afhankelijkheid van de waarnemingen genegeerd wordt, dan is de best passende regressielijn door de totale puntenwolk de oranje dalende lijn en deze geeft geen correcte weergave van de trend per patiënt.
Welke analyses zijn er mogelijk voor herhaalde metingen?
- Simpele methodes: Soms kunnen herhaalde metingen samengevat worden in een enkele relevante maat. Je kunt bijvoorbeeld de meting van slechts een tijdpunt of de verandering tussen twee meetpunten gebruiken, een samenvattende maat zoals het gemiddelde of de area under the curve uitrekenen, of de tijd tot het bereiken van een bepaalde grenswaarde van de uitkomstmaat te analyseren (survival analyse).
De simpele methodes gebruiken maar een deel van de verzamelde informatie en dat levert vaak minder onderscheidingsvermogen (power) op. Daarentegen is de interpretatie ervan mogelijk veel intuïtiever dan bij het gebruiken van geavanceerdere methodes.
- Geavanceerde methodes: Er bestaan ook methodes die wel alle herhaalde metingen gebruiken en corrigeren voor de afhankelijkheid van de metingen. Voorbeelden van analyses die geschikt zijn voor herhaalde metingen zijn o.a. mixed effects modellen (waaronder de repeated measures ANOVA) en generalized estimating equations (GEE).
Repeated measurements ANOVA is een specifieke variant van mixed effects-modellen, specifiek voor continue normaal verdeelde afhankelijke variabelen die op vaste en dezelfde tijdstippen zijn gemeten in alle patiënten. Mixed effects-modellen en GEE-modellen zijn flexibeler dan de repeated measures ANOVA en zijn beschikbaar voor zowel continue normaal verdeelde afhankelijke variabelen, als voor bijvoorbeeld dichotome afhankelijke variabelen. Bovendien kunnen de mixed effects modellen, in tegenstelling tot de repeated measures ANOVA ook omgaan met een zekere mate van missing values, namelijk wanneer de data missing at random zijn.
Hoe bereken ik met SPSS handig een area under the curve bij veel herhaalde metingen?
Ik wil graag van een bepaalde meting in de tijd, op verschillende tijdstippen gemeten, de 'area under the curve' bepalen. Ik kom er met SPSS niet uit. Ik moet er namelijk een stuk of 300 bepalen... heeft u nog een advies?
Binnen SPSS kun je 'loops' gebruiken om bewerkingen of hercoderingen efficiënt uit te voeren. Je kunt de volgende syntax gebruiken, deze rekent per patiënt een area under the curve uit. Bovenaan het document staat beschreven hoe je de variabelen in SPSS moet hebben staan.
Hoe kan ik data van 4 experimenten combineren?
De experimenten die ik verricht, heb ik in 4 sessies opgesplitst, aangezien het niet behapbaar was alle samples in een keer te verwerken. Nu blijkt dat de vergelijkingsgroepen (verschillende diagnoses) binnen elke serie toch wel erg klein zijn en vraag ik me af of en hoe ik de data van de 4 series zou kunnen combineren.
Wat wel gebruikt wordt bij zulk soort settings is het toepassen van een factor-correctie. Zie ook de referentie naar de paper van Ruijter [1] onderaan op deze pagina. Je kunt ook binnen een statistisch model een correctie voor de 'clustering' binnen sessies meenemen, bijvoorbeeld door een mixed model of repeated measures ANOVA te gebruiken. Je beschouwt de experimenten dan als 'herhaalde metingen' binnen een sessie.
Referenties
- Ruijter JM, Thygesen HH, Schoneveld OJ, Das AT, Berkhout B, and Lamers WH. Factor correction as a tool to eliminate between-session variation in replicate experiments: application to molecular biology and retrovirology. Retrovirology. 2006 Jan 6;3:2. DOI:10.1186/1742-4690-3-2 |
- Gueorguieva R and Krystal JH. Move over ANOVA: progress in analyzing repeated-measures data and its reflection in papers published in the Archives of General Psychiatry. Arch Gen Psychiatry. 2004 Mar;61(3):310-7. DOI:10.1001/archpsyc.61.3.310 |
- West BT. Analyzing longitudinal data with the linear mixed models procedure in SPSS. Eval Health Prof. 2009 Sep;32(3):207-28. DOI:10.1177/0163278709338554 |
Aanvullende bronnen
- Deze post van Jonathan Bartlett over Odds ratios, collapsibility, marginal vs. conditional, GEE vs GLMMs geeft aan wat het verschil is tussen GEE en GLMM (mixed model) aanpak bij binaire uitkomsten.
- The analysis factor - The Repeated and Random Statements in Mixed Models for Repeated Measures info over het onderscheid tussen de repeated en de random statement in SPSS mixed.
- The analysis factor info over de verschillende aanpakken voor herhaalde metingen: repeated measurements anova, marginal model, mixed model.
- Robin Beaumont Heath Informatics course material Vrij te gebruiken cursusmateriaal over linear mixed models met uileg van specificatie in zowel SPSS als R, zie week 6 7 en 8. Inclusief bijbehorende Youtube instructiefilmpjes.
Sofwaretips
- GLLAMM Een familie functies (vrij te downloaden/attachen) in Stata, waarbij er opties zijn voor het modelleren van herhaaldelijk gemeten niet continue uitkomstmaten (dichotome, ordinale etc).
- SuperMix Een standalone programma geschikt voor het modelleren van herhaaldelijk gemeten niet continue uitkomstmaten (dichotome, ordinale etc).
Klaar met lezen? Je kunt naar het OVERZICHT van alle statistische onderwerpen op deze wiki gaan of naar de pagina KEUZE TOETS voor hulp bij het uitzoeken van een geschikte toets of analyse. Wil je meer leren over biostatistiek? Volg dan de AMC e-learning Practical Biostatistics. Vind je op deze pagina's iets dat niet klopt? Werkt een link niet? Of wil je bijdragen aan de wiki? Neem dan contact met ons op.
De wiki biostatistiek is een initiatief van de voormalige helpdesk statistiek van Amsterdam UMC, locatie AMC. Medewerkers van Amsterdam UMC kunnen via intranet ondersteuning aanvragen.