Lineaire regressie: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Als je een [[correlatie correlatietechniek]] toepast ben je geïnteresseerd in de mate van samenhang tussen twee variabelen X en Y, bijvoorbeeld een onderzoek naar de samenhang tussen leeftijd en scores op een cognitieve test. Met lineaire regressie ga je een stap verder. Met deze techniek probeer je de waarden van de uitkomst Y via een lineair verband te voorspellen uit die van X. De uitkomstvariabele Y wordt de afhankelijke variabele genoemd, en de voorspeller X de onafhankelijke variabele. | |||
We spreken van enkelvoudige (ook wel simple of univariable) regressie als we de uitkomst willen voorspellen met één predictor. In de praktijk zal dat in vele gevallen niet voldoende zijn en is het wenselijk om de effecten van twee of meer voorspellers te analyseren. We spreken dan van [[multivariabele regressie|meervoudige (ook wel multiple of multivariable)]] lineaire regressie. | |||
:<math> | :<math> |
Revision as of 15:27, 25 May 2009
Als je een correlatie correlatietechniek toepast ben je geïnteresseerd in de mate van samenhang tussen twee variabelen X en Y, bijvoorbeeld een onderzoek naar de samenhang tussen leeftijd en scores op een cognitieve test. Met lineaire regressie ga je een stap verder. Met deze techniek probeer je de waarden van de uitkomst Y via een lineair verband te voorspellen uit die van X. De uitkomstvariabele Y wordt de afhankelijke variabele genoemd, en de voorspeller X de onafhankelijke variabele. We spreken van enkelvoudige (ook wel simple of univariable) regressie als we de uitkomst willen voorspellen met één predictor. In de praktijk zal dat in vele gevallen niet voldoende zijn en is het wenselijk om de effecten van twee of meer voorspellers te analyseren. We spreken dan van meervoudige (ook wel multiple of multivariable) lineaire regressie.
Wanneer gebruik ik een lineair regressie model?
Hoe interpreteer ik de resultaten van mijn lineaire model bij een log transformatie van de uitkomstmaat?
Ik heb een vraag over de interpretatie van de B-waarden in mijn lineaire regressie analyse. De afhankelijke variable is namelijk een log-getransformeerde cortisolwaarde waardoor de B waarde (en wellicht ook de gestandaardiseerde Beta) moeilijker te interpreteren zijn. Ik heb daarom de B-waarden terug getransformeerd (Transformed B (EXP(B-waarde)) en krijg dan waarden rond de 1. Mijn vraag is nu: hoe leg ik de B-waardes uit tijdens de presentatie op een congres komende week? Normaal gesproken spreek je van bij 1 unit toename in de afhankelijke variabele van ...(B-waarde) afname in cortisol waarde. Zelf dacht ik dat bijvoorbeeld nu Transformed [EXP(beta)] = 0.97, CI (0.95-0.99), p = .027 nu uiteglegd kan worden als:bij iedere unit toename van de afhankelijke variabele geeft een afname van 3% in cortisol. Klopt dit?
Als je een linear model fit om het effect van X op de log-getransformeerde cortisolwaarde te beoordelen, ziet dat er als volgt uit:
log(cortisol) = intercept + B * X
Inderdaad, een unit toename in X geeft B toename van de log(cortisol). Als we dit terug willen vertalen naar "gewone" cortisolwaardes, gebruiken we de inverse van de log:
Exp(log(coritsol)) = exp (intercept + B*SRIP)
Dit is gelijk aan:
cortisol = exp ( intercept + B*SRIP)
Bekijken we nu het verschil in cortisolwaarden bij toename van 1 unit SRIP:
cortisol = exp ( intercept + B*X + B)
Dan is dit gebruik makend van de rekenregels gelijk aan
exp (intercept + B*X) * exp (B)
Nu is het eerste gedeelte van bovenstaande vergelijking precies gelijk aan de cortisolwaarde op het "beginpunt", dus inderdaad: een unit extra SRIP geeft vermenigvuldiging van de cortisolwaarde met de factor exp(B). En ook inderdaad: indien de exp(B) = 0.97, dan geeft vermenigvuldiging hiermee een afname van 3%.
Je interpretatie was dus juist. (In het bovenstaande ben ik wel vanuit gegaan dat de cortisol waardes met de natuurlijke logaritme getransformeerd zijn en niet bijvoorbeeld met een 10log).
Waar vind ik lineaire regressie in SPSS?
Je vind lineaire regressie in SPSS 16 onder Analyze -> Regression -> Linear.
Referenties
Terug naar OVERZICHT voor een overzicht van alle statistische onderwerpen op deze wiki.
Terug naar KEUZE TOETS voor hulp bij het uitzoeken van een geschikte toets of analyse.