Logistische regressie: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
In tegenstelling tot bij [[Lineaire regressie|lineaire regressie]] gelden bij logistische regressie niet al te veel statistische voorwaarden. Zo hoeven er bijvoorbeeld geen aannames te worden gedaan over de verdeling van de variabelen en mogen de voorspellers (of verklarende variabelen) zowel discreet als continu zijn. Wel moeten de observaties onafhankelijk van elkaar zijn. Dat betekent dat logistische regressie dus niet geschikt is om onderzoeksgegevens te analyseren waarbij de patiënten herhaaldelijk in de tijd zijn gemeten (voor [[herhaalde metingen]] bestaan andere technieken). | In tegenstelling tot bij [[Lineaire regressie|lineaire regressie]] gelden bij logistische regressie niet al te veel statistische voorwaarden. Zo hoeven er bijvoorbeeld geen aannames te worden gedaan over de verdeling van de variabelen en mogen de voorspellers (of verklarende variabelen) zowel discreet als continu zijn. Wel moeten de observaties onafhankelijk van elkaar zijn. Dat betekent dat logistische regressie dus niet geschikt is om onderzoeksgegevens te analyseren waarbij de patiënten herhaaldelijk in de tijd zijn gemeten (voor [[herhaalde metingen]] bestaan andere technieken). | ||
==Hoe werkt logistische regressie?== | |||
In een logistisch regressiemodel wordt niet de dichotome uitkomst zelf gemodelleerd, maar de kans op die uitkomst. Omdat een kans loopt van minimum 0 tot maximaal 1 en bij lineaire regressie de uitkomstvariabele continu moet zijn, kunnen we de kans niet rechtstreeks als uitkomstvariabele gebruiken. We kunnen wel gebruik maken van de relatieve kans: de [[odds ratio|odds]]. Immers, de odds is een continue variabele die loopt van 0 tot oneindig. Vervolgens moet er statistisch nog iets aanvullends worden gedaan. De odds, die loopt van 0 tot oneindig, is immers nog niet normaal verdeeld, hetgeen óók een voorwaarde is voor lineaire regressie. Als uitkomstvariabele wordt daarom niet de odds gebruikt, maar de natuurlijke logaritme van de odds, die niet alleen continu maar ook normaal verdeeld is. | |||
In de logistische regressie vergelijking | |||
<math> | |||
ln(odds)=a+b_1X_1+b_2X_2+\cdots+b_kX_k | |||
</math> | |||
is de natuurlijke logaritme van de odds de uitkomst variabele, is a de constante, zijn Xi (i = 1,2, ….., k) de verklarende variabelen of covariaten, en vormen b1, b2, …… bk de logistische regressiecoëfficiënten. | |||
== Referenties == | == Referenties == |
Revision as of 15:22, 5 June 2009
Wanneer gebruik ik een logistisch regressie model?
Met logistische regressie kan je een dichotome uitkomstvariabele (dood versus leven, wel of geen klachten, etc.) relateren aan één of meerdere predictoren. Het basis idee achter logistische regressie is dat je de uitkomstvariabele zodanig transformeert dat er een soort lineaire regressie mogelijk is. De logistische regressie coëfficiënten van de onafhankelijke variabelen in het model kunnen vervolgens worden omgezet in odds ratio’s.
In tegenstelling tot bij lineaire regressie gelden bij logistische regressie niet al te veel statistische voorwaarden. Zo hoeven er bijvoorbeeld geen aannames te worden gedaan over de verdeling van de variabelen en mogen de voorspellers (of verklarende variabelen) zowel discreet als continu zijn. Wel moeten de observaties onafhankelijk van elkaar zijn. Dat betekent dat logistische regressie dus niet geschikt is om onderzoeksgegevens te analyseren waarbij de patiënten herhaaldelijk in de tijd zijn gemeten (voor herhaalde metingen bestaan andere technieken).
Hoe werkt logistische regressie?
In een logistisch regressiemodel wordt niet de dichotome uitkomst zelf gemodelleerd, maar de kans op die uitkomst. Omdat een kans loopt van minimum 0 tot maximaal 1 en bij lineaire regressie de uitkomstvariabele continu moet zijn, kunnen we de kans niet rechtstreeks als uitkomstvariabele gebruiken. We kunnen wel gebruik maken van de relatieve kans: de odds. Immers, de odds is een continue variabele die loopt van 0 tot oneindig. Vervolgens moet er statistisch nog iets aanvullends worden gedaan. De odds, die loopt van 0 tot oneindig, is immers nog niet normaal verdeeld, hetgeen óók een voorwaarde is voor lineaire regressie. Als uitkomstvariabele wordt daarom niet de odds gebruikt, maar de natuurlijke logaritme van de odds, die niet alleen continu maar ook normaal verdeeld is. In de logistische regressie vergelijking is de natuurlijke logaritme van de odds de uitkomst variabele, is a de constante, zijn Xi (i = 1,2, ….., k) de verklarende variabelen of covariaten, en vormen b1, b2, …… bk de logistische regressiecoëfficiënten.
Referenties
Terug naar OVERZICHT voor een overzicht van alle statistische onderwerpen op deze wiki.
Terug naar KEUZE TOETS voor hulp bij het uitzoeken van een geschikte toets of analyse.