Fisher's exact toets: Difference between revisions
No edit summary |
|||
Line 7: | Line 7: | ||
== Wanneer gebruik ik Fisher's exact test? == | == Wanneer gebruik ik Fisher's exact test? == | ||
Fisher's exact test kan gebruikt worden om te toetsen of het verschil tussen twee proporties in een klassieke 2x2 tabel significant is. Dergelijke tabellen worden meestal geanalyseerd met een [[Chi-kwadraat toets]]. Traditioneel wordt er voor de Fisher's exact test gekozen ipv een Chi-kwadraat wanneer er lage aantallen (geobserveerde count ~<10 of expected count <5) in de 2x2 tabel voorkomen. De Chi-kwadraat test is dan niet meer nauwkeurig. Omdat Fisher's Exact test in de huidige statistische pakketten even snel uitgerekend kan worden als een chi-kwadraat test is er geen bezwaar meer om deze exacte test (chi-kwadraat gebruikt een benadering) altijd te gebruiken bij het analyseren van een 2x2 | Fisher's exact test kan gebruikt worden om te toetsen of het verschil tussen twee proporties in een klassieke 2x2 tabel significant is. Dergelijke tabellen worden meestal geanalyseerd met een [[Chi-kwadraat toets]]. Traditioneel wordt er voor de Fisher's exact test gekozen ipv een Chi-kwadraat wanneer er lage aantallen (geobserveerde count ~<10 of expected count <5) in de 2x2 tabel voorkomen. De Chi-kwadraat test is dan niet meer nauwkeurig. Omdat Fisher's Exact test in de huidige statistische pakketten even snel uitgerekend kan worden als een chi-kwadraat test is er geen bezwaar meer om deze exacte test (chi-kwadraat gebruikt een benadering) altijd te gebruiken bij het analyseren van een 2x2 tabel. In het algemeen zal de Chi-kwadraat toets minder conservatief (sneller significant) toetsen dan de Fisher's exact toets. | ||
Voorbeeld van een klassieke 2x2 tabel: | Voorbeeld van een klassieke 2x2 tabel: |
Revision as of 17:17, 2 March 2010
Auteur | ir. N. van Geloven | |
Co-Auteur | ||
auteurschap op deze site |
Fisher's exact toets beoordeelt of het verschil tussen twee proporties werkelijk bestaat of slechts "toevallig" is.
Wanneer gebruik ik Fisher's exact test?
Fisher's exact test kan gebruikt worden om te toetsen of het verschil tussen twee proporties in een klassieke 2x2 tabel significant is. Dergelijke tabellen worden meestal geanalyseerd met een Chi-kwadraat toets. Traditioneel wordt er voor de Fisher's exact test gekozen ipv een Chi-kwadraat wanneer er lage aantallen (geobserveerde count ~<10 of expected count <5) in de 2x2 tabel voorkomen. De Chi-kwadraat test is dan niet meer nauwkeurig. Omdat Fisher's Exact test in de huidige statistische pakketten even snel uitgerekend kan worden als een chi-kwadraat test is er geen bezwaar meer om deze exacte test (chi-kwadraat gebruikt een benadering) altijd te gebruiken bij het analyseren van een 2x2 tabel. In het algemeen zal de Chi-kwadraat toets minder conservatief (sneller significant) toetsen dan de Fisher's exact toets.
Voorbeeld van een klassieke 2x2 tabel:
cases | controls | totals | |
men | 0 | 10 | 10 |
woman | 12 | 2 | 14 |
totals | 12 | 12 | 24 |
Moet ik Chi-kwadraat of Fisher's exact toetsen gebruiken?
Voor mijn onderzoek heb ik een aantal uitkomsten geanalyseerd met X2-testen. Het is niet een heel grote studie (75 patienten), dus de aantallen patienten met de symptomen waar het om gaat zijn soms klein. In principe heb ik X2-testen gebruikt, alleen in het geval van een "expected count" van minder dan 5 in 20% of meer van de cellen in de tabel heb ik een Fisher's exact test gedaan. Nu doen we deze studie samen met een sponsor en zij hebben ook statistische analyses gedaan. Ik kreeg net de resultaten en zij blijken voor alle uitkomsten Fisher's exact testen gedaan te hebben (ipv X2). Dit is nogal jammer want een aantal statistisch significante uitkomsten die ik vond met de X2-testen (en die allemaal in dezelfde richting wezen dus leken te kloppen) zijn nu net niet significant meer (tenminste niet als je de uitkomsten van de two-tailed Fisher neemt, zoals de sponsor heeft gedaan). Wat is jullie mening hierover?
De sponsor heeft een punt: Fisher's exact toets is nauwkeuriger dan de X2 toets en kan tegenwoordig even gemakkelijk uitgerekend worden. In het algemeen: de uitkomst/interpretatie van je studie zou niet moeten hangen om een p-waarde van 0.04 of 0.06, er zijn veel belangrijkere punten te maken dan het wel of niet onder de 0.05 uitkomen van een p-waarde.
Ik heb in mijn controlearm 0 events, kan ik het verschil tussen beide armen nog wel toetsen?
Ik heb het voorkomen van hyperthyreoidie bij patienten met veneuze trombose vs controles bekeken. Van de 173 cases hadden 3 patienten een hyperthyreoidie vs 0 van de 344 controles. Statische analyse met behulp van de Fisher's exact test toont dat hyperthyreoidie en veneuze trombose vaker samen voorkomen dan op basis van toeval verwacht kan worden (p=0.037). Volgens een van mijn professoren kunnen bovenstaande getallen echter geen significant verschil opleveren. Kan ik Fisher's exact test wel gebruiken in dit geval?
Jouw berekeningen kloppen: 3 uit 173 (1.7%) is significant verschillend van 0 uit 344 (0%) en de p-waarde is inderdaad 0.037. Ik kan me de scepsis van de prof wel voorstellen want 3 events is natuurlijk niet heel veel, maar misschien helpt het als je benadrukt dat 0 events uit 344 observaties al behoorlijk veel evidence geeft dat de event-rate in de controls heel erg laag is; feitelijk loopt het 95% betrouwbaarheidsinterval nul tot 1.07%, dus de kans dat het in de buurt van de 1.7% ligt is heel erg gering. Je zult wellicht dezelfde scepsis ontmoeten als je dit resultaat wilt publiceren, dus misschien moet je nog wat meer evidence verzamelen.
Ik heb in mijn controlearm 0 events, hoe reken ik nu de odds ratio uit?
Ik heb een 0 in een aantal 2x2 tabellen waardoor ik geen OR kan berekenen. Wat is de gebruikelijke oplossing hiervoor?
De meest gebruikte methode om toch een OR te kunnen uitrekenen, waneer een van de cellen in de tabel nul is, is bij ALLE cellen 0.5 op te tellen. Dit resulteert waarschijnlijk wel in een groter betrouwbaarheidsinterval. Een referentie voor deze correctie en de SE is: Agresti A (1990) Categorical Data Analysis. John Wiley & sons, New York. p. 54.
Waar vind ik Fisher's exact test in SPSS?
Je vindt de test in SPSS 16 onder Analyse->Descriptive Statistics->Crosstabs. Vink onder de knop "Statistics..." Chi-square aan. Je krijgt dan naast de Chi-kwadraat toets ook Fisher's exact test in de output.
Referenties
- Agresti A (1990) Categorical Data Analysis. John Wiley & sons, New York.
- Mehta, C. R.& Patel, N. R. 1997. Exact inference in categorical data. Biometrics, 53(1), 112-117.
Terug naar OVERZICHT voor een overzicht van alle statistische onderwerpen op deze wiki.
Terug naar KEUZE TOETS voor hulp bij het uitzoeken van een geschikte toets of analyse.