Standaardfout/standard error: Difference between revisions

From Wikistatistiek
Jump to navigation Jump to search
No edit summary
Line 19: Line 19:


(mean_2-mean_1)/mean_1 = e^(ln(mean_2/mean_1)) - 1
(mean_2-mean_1)/mean_1 = e^(ln(mean_2/mean_1)) - 1
==Hoe bereken ik de standard error van een standaard deviatie?==
De standard error van de schatting van een standaard deviatie kan berekend worden als:
s / wortel(2*(n-1)) ~ 0.71* standard error of the mean ,
waarbij s de sample standaard deviatie en n het aantal waarnemingen. Zie ook deze [http://www.miislita.com/information-retrieval-tutorial/a-tutorial-on-standard-errors.pdf tutorial].


==Referenties ==
==Referenties ==

Revision as of 11:31, 3 January 2012

Auteur ir. N. van Geloven
Co-Auteur
auteurschap op deze site

De standaardfout van een schatting geeft de precisie van die schatting weer. De standaardfout (Engels standard error (SE)) wordt gebruikt om aan te geven hoe zeker je bent van een geschatte waarde. Formeel geeft de waarde de spreiding (standaard deviatie) van de schatting weer als er meerdere samples zouden zijn, waarbij er bij iedere sample opnieuw de schatting gemaakt wordt.

Hoe bereken ik de SE van een procentuele toename?

Ik heb in een controle (1) en een interventie (2) groep een mean en SE. Als samenvattende maat bereken ik de procentuele toename in de interventie groep tov de controle groep: (mean_2 - mean_1) / mean_1 * 100%. Hoe kan ik een SE berekenen van deze percentuele toename?

Het is niet gebruikelijk om een SE te berekenen op deze 'procentuele' schaal. Reden hiervoor is dat als je bijv een 30% decrease zou hebben met een SE van 20%, je bij het doorrekenen naar een 95% betrouwbaarheidsinterval op 'rare' negatieve percentages (30% +/- 1,95*20%) uit zou komen. In het algemeen gebruik je de SE op een schaal waar je met redelijkheid kunt aannemen dat een normale verdeling geldt (om dezelfde reden wordt er bijvoorbeeld bij logistische regressie de SE vermeld bij de regressiecoefficienten en niet bij de odds ratio). Je kunt wel de SE berekenen op een getransformeerde schaal. In het bijzonder zou je hier de natuurlijk logarithme van de fold increase kunnen gebruiken:

ln (mean_2/mean_1) = ln(mean_2) - ln(mean_1).

De bijbehorende SE op deze schaal is (dit kun je berekenen met behulp van de delta methode):

wortel (SE_1^2 / mean_1^2 + SE_2^2 / mean_2^2).

Op deze getransformeerde schaal zou je wel berekeningen kunnen doen (bijv poolen van studieresultaten of berekenen van een 95% betrouwbaarheidsinterval voor beschrijving). Vanaf de op deze schaal uitgerekende getallen kun je altijd weer terug transformeren, met behulp van de volgende omzetting:

(mean_2-mean_1)/mean_1 = e^(ln(mean_2/mean_1)) - 1

Hoe bereken ik de standard error van een standaard deviatie?

De standard error van de schatting van een standaard deviatie kan berekend worden als:

s / wortel(2*(n-1)) ~ 0.71* standard error of the mean ,

waarbij s de sample standaard deviatie en n het aantal waarnemingen. Zie ook deze tutorial.

Referenties

Terug naar OVERZICHT voor een overzicht van alle statistische onderwerpen op deze wiki.

Terug naar KEUZE TOETS voor hulp bij het uitzoeken van een geschikte toets of analyse.