Poweranalyse: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
Een power en sample size analyse berekend het aantal proefpersonen dat je in een studie moet includeren om een vooraf gedefinieerd minimaal klinisch relevant verschil met een bepaalde kans (power) waar te nemen. | Een power en sample size analyse berekend het aantal proefpersonen dat je in een studie moet includeren om een vooraf gedefinieerd minimaal klinisch relevant verschil met een bepaalde kans (power) waar te nemen. | ||
====Waarom doe ik een power en sample size analyse?==== | ====Waarom doe ik een power en sample size analyse?==== | ||
Een van de meest gestelde vragen vooraf aan een studie is: hoeveel proefpersonen heb ik in deze studie nodig? Een belangrijke vraag, een verkeerde sample size kan 3 ethische bezwaren opleveren. Ten eerste, een onderschatting van de sample size kan er toe leiden dat een werkelijk effect niet door de studie gedetecteerd wordt en proefpersonen dus voor niets worden getest. De studie leidt dan tot een fout-negatieve conclusie. Ten tweede, in het geval van een te grootte sample size zal een deel van de proefpersonen onnodig een effectieve interventie worden onthouden. Ten derde, als de interventie niet werkzaam blijkt te zijn worden te veel proefpersonen blootgesteld aan een ineffectieve interventie. | |||
Ga naar de vragen over het gebruik van de [[Benodigde info voor poweranalyse]] | Ga naar de vragen over het gebruik van de [[Benodigde info voor poweranalyse]] |
Revision as of 08:06, 15 April 2009
POWERANALYSE:
Wat is een power analyse?
Een power en sample size analyse berekend het aantal proefpersonen dat je in een studie moet includeren om een vooraf gedefinieerd minimaal klinisch relevant verschil met een bepaalde kans (power) waar te nemen.
Waarom doe ik een power en sample size analyse?
Een van de meest gestelde vragen vooraf aan een studie is: hoeveel proefpersonen heb ik in deze studie nodig? Een belangrijke vraag, een verkeerde sample size kan 3 ethische bezwaren opleveren. Ten eerste, een onderschatting van de sample size kan er toe leiden dat een werkelijk effect niet door de studie gedetecteerd wordt en proefpersonen dus voor niets worden getest. De studie leidt dan tot een fout-negatieve conclusie. Ten tweede, in het geval van een te grootte sample size zal een deel van de proefpersonen onnodig een effectieve interventie worden onthouden. Ten derde, als de interventie niet werkzaam blijkt te zijn worden te veel proefpersonen blootgesteld aan een ineffectieve interventie.
Ga naar de vragen over het gebruik van de Benodigde info voor poweranalyse
Post hoc poweranalyse
Post hoc? Hoezo Post hoc? In deze tekst leest de onderzoeker weer wat meer over de wondere wereld van PH poweranalyse
Ga naar de vragen over het gebruik van de Post hoc poweranalyse
Poweranalyse in een equivalentiestudie
Poweranalyse in een “clustered” trial
Overig
Verwijzingen naar literatuur
- Florey CD. Sample size for beginners. BMJ 1993; volume 306: 1181-4
- Kerry Sm, Bland JM. Statistics notes: sample size in cluster randomization. BMJ 1998; volume 316: 549